Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.103
1.
Physiol Res ; 73(2): 227-237, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710058

Nephrotoxicity as a cause of acute kidney injury (AKI) induced by cisplatin (CP), limits its usefulness as an anticancer agent. Diminazene, an angiotensin converting enzyme 2 activator, exhibited renoprotective properties on rat models of kidney diseases. This research aims to investigate the salutary effect of diminazene in comparison with lisinopril or valsartan in CP-induced AKI. The first and second groups of rats received oral vehicle (distilled water) for 9 days, and saline injection or intraperitoneal CP (6 mg/kg) on day 6, respectively. Third, fourth, and fifth groups received intraperitoneal injections of CP on day 6 and diminazene (15 mg/kg/day, orally), lisinopril (10 mg/kg/day, orally), or valsartan (30 mg/kg/day, orally), for 9 days, respectively. 24h after the last day of treatment, blood and kidneys were removed under anesthesia for biochemical and histopathological examination. Urine during the last 24 h before sacrificing the rats was also collected. CP significantly increased plasma urea, creatinine, neutrophil gelatinase-associated lipocalin, calcium, phosphorus, and uric acid. It also increased urinary albumin/creatinine ratio, N-Acetyl-beta-D-Glucosaminidase/creatinine ratio, and reduced creatinine clearance, as well the plasma concentrations of inflammatory cytokines [plasma tumor necrosis factor-alpha, and interleukin-1beta], and significantly reduced antioxidant indices [catalase, glutathione reductase , and superoxide dismutase]. Histopathologically, CP treatment caused necrosis of renal tubules, tubular casts, shrunken glomeruli, and increased renal fibrosis. Diminazine, lisinopril, and valsartan ameliorated CP-induced biochemical and histopathological changes to a similar extent. The salutary effect of the three drugs used is, at least partially, due to their anti-inflammatory and antioxidant effects. Keywords: Cisplatin, Diminazene, ACE2 activator, Lisinopril, Valsartan, Acute kidney injury.


Acute Kidney Injury , Cisplatin , Diminazene , Lisinopril , Rats, Wistar , Valsartan , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Lisinopril/pharmacology , Cisplatin/toxicity , Valsartan/pharmacology , Male , Diminazene/analogs & derivatives , Diminazene/pharmacology , Diminazene/therapeutic use , Rats , Antineoplastic Agents/toxicity , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
2.
J Int Med Res ; 52(5): 3000605241247707, 2024 May.
Article En | MEDLINE | ID: mdl-38717029

Lipopolysaccharide (LPS) is widely used to establish various animal models, including models of acute lung injury, cardiomyocyte damage, and acute kidney injury. Currently, there is no consensus on the diagnosis and treatment of LPS-induced disease. We herein present a case series of four patients who developed dose-dependent multi-organ injury, including acute lung injury and acute kidney injury, after inhaling LPS gas in a sealed room. These patients exhibited varying degrees of multi-organ injury characterized by inflammatory cell infiltration and secretion of proinflammatory cytokines. One patient showed progressive symptoms even with active treatment, leading to mild pulmonary fibrosis. This study emphasizes the importance of early diagnosis and treatment of significant LPS exposure and suggests personalized treatment approaches for managing LPS poisoning.


Lipopolysaccharides , Humans , Male , Middle Aged , Female , Adult , Multiple Organ Failure/etiology , Multiple Organ Failure/chemically induced , Administration, Inhalation , Acute Lung Injury/chemically induced , Acute Kidney Injury/chemically induced , Cytokines/metabolism , Aged , Dose-Response Relationship, Drug
3.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Article En | MEDLINE | ID: mdl-38691919

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Aconitum , Acute Kidney Injury , Apoptosis , Kidney , Mitochondria , Rats, Sprague-Dawley , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Apoptosis/drug effects , Aconitum/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Male , Rats , Cell Line , Kidney/drug effects , Kidney/pathology , Gentamicins/toxicity , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Aconitine/analogs & derivatives , Aconitine/pharmacology , Aconitine/therapeutic use , Disease Models, Animal , Membrane Potential, Mitochondrial/drug effects , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diterpenes
5.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704766

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Connective Tissue Growth Factor , Hypoxia-Inducible Factor 1, alpha Subunit , Kidney , Linagliptin , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Tacrolimus , Animals , Tacrolimus/pharmacology , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NF-E2-Related Factor 2/metabolism , Connective Tissue Growth Factor/metabolism , Linagliptin/pharmacology , Oxidative Stress/drug effects , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Plasminogen Activator Inhibitor 1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Signal Transduction/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Immunosuppressive Agents/pharmacology
6.
Anal Chim Acta ; 1308: 342611, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740450

BACKGROUND: Acute kidney injury (AKI) poses a severe risk to public health, mostly manifested by damage and death of renal tubular epithelial cells. However, routine blood examination, a conventional approach for clinical detection of AKI, is not available for identifying early-stage AKI. Plenty of reported methods were lack of early biomarkers and real time evaluation tools, which resulted in a vital challenge for early diagnosis of AKI. Therefore, developing novel probes for early detection and assessment of AKI is exceedingly crucial. RESULTS: Based on ESIPT mechanism, a new fluorescent probe (MEO-NO) with 2-(2'-hydroxyphenyl) benzothiazole (HBT) derivatives as fluorophore has been synthesized for dynamic imaging peroxynitrite (ONOO-) levels in ferroptosis-mediated AKI. Upon the addition of ONOO-, MEO-NO exhibited obvious fluorescence changes, a significant Stokes shift (130 nm) and rapid response (approximately 45 s), and featured exceptional sensitivity (LOD = 7.28 nM) as well as high selectivity from the competitive species at physiological pH. In addition, MEO-NO was conducive to the biological depth imaging ONOO- in cells, zebrafish, and mice. Importantly, MEO-NO could monitor ONOO- levels during sorafenib-induced ferroptosis and CP-induced AKI. With the assistance of MEO-NO, we successfully visualized and tracked ONOO- variations for early detection and assessment of ferroptosis-mediated AKI in cells, zebrafish and mice models. SIGNIFICANCE AND NOVELTY: Benefiting from the superior performance of MEO-NO, experimental results further demonstrated that the levels of ONOO- was overexpressed during ferroptosis-mediated AKI in cells, zebrafish, and mice models. The developed novel probe MEO-NO provided a strong visualization tool for imagining ONOO-, which might be a potential method for the prevention, diagnosis, and treatment of ferroptosis-mediated AKI.


Acute Kidney Injury , Ferroptosis , Fluorescent Dyes , Peroxynitrous Acid , Zebrafish , Ferroptosis/drug effects , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Peroxynitrous Acid/metabolism , Acute Kidney Injury/chemically induced , Animals , Mice , Humans , Optical Imaging , Molecular Structure , Early Diagnosis
7.
J Assoc Physicians India ; 72(1): 74-80, 2024 Jan.
Article En | MEDLINE | ID: mdl-38736077

Drug-induced kidney disease (DIKD) is a frequent cause of acute and chronic kidney disease (CKD) that leads to high morbidity, hospitalization, and increased healthcare costs. There is a need to constantly update our knowledge in this field, given the ever-burgeoning list of newer treatments that are emerging, especially in the field of cancer immunotherapy. Generalizing the complex pathways causing DIKD from different agents, the common mechanisms include direct toxicity, immune-mediated injury, and drug-induced alterations in renal blood flow. Proper management of this condition involves risk minimization, early detection of renal damage, and timely discontinuation of potential agents to avoid irreversible renal damage.


Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/chemically induced , Kidney Diseases/chemically induced , Acute Kidney Injury/chemically induced
9.
Int Immunopharmacol ; 133: 112001, 2024 May 30.
Article En | MEDLINE | ID: mdl-38608443

Acute kidney injury (AKI) is a critical complication known for their extremely high mortality rate and lack of effective clinical therapy. Disorders in mitochondrial dynamics possess a pivotal role in the occurrence and progression of contrast-induced nephropathy (CIN) by activating NLRP3 inflammasome. The activation of dynamin-related protein-1 (Drp1) can trigger mitochondrial dynamic disorders by regulating excessive mitochondrial fission. However, the precise role of Drp1 during CIN has not been clarified. In vivo experiments revealed that inhibiting Drp1 through Mdivi-1 (one selective inhibitor of Drp1) can significantly decrease the expression of p-Drp1 (Ser616), mitochondrial p-Drp1 (Ser616), mitochondrial Bax, mitochondrial reactive oxygen species (mROS), NLRP3, caspase-1, ASC, TNF-α, IL-1ß, interleukin (IL)-18, IL-6, creatinine (Cr), malondialdehyde (MDA), blood urea nitrogen (BUN), and KIM-1. Moreover, Mdivi-1 reduced kidney pathological injury and downregulated the interaction between NLRP3 and thioredoxin-interacting protein (TXNIP), which was accompanied by decreased interactions between TRX and TXNIP. This resulted in increasing superoxide dismutase (SOD) and CAT activity, TRX expression, up-regulating mitochondrial membrane potential, and augmenting ATP contents and p-Drp1 (Ser616) levels in the cytoplasm. However, it did not bring impact on the expression of p-Drp1 (Ser637) and TXNIP. Activating Drp-1though Acetaldehyde abrogated the effects of Mdivi-1. In addition, the results of in vitro studies employing siRNA-Drp1 and plasmid-Drp1 intervention in HK-2 cells treated with iohexol were consistent with the in vivo experiments. Our findings revealed inhibiting Drp1 phosphorylation at Ser616 could ameliorate iohexol -induced acute kidney injury though alleviating the activation of the TXNIP-NLRP3 inflammasome pathway.


Acute Kidney Injury , Carrier Proteins , Contrast Media , Dynamins , Inflammasomes , Mitochondrial Dynamics , NLR Family, Pyrin Domain-Containing 3 Protein , Quinazolinones , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Dynamins/metabolism , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Mitochondrial Dynamics/drug effects , Inflammasomes/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Male , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , Mice , Contrast Media/adverse effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Humans , Signal Transduction/drug effects , Thioredoxins/metabolism , Thioredoxins/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cell Line
10.
Int J Clin Oncol ; 29(5): 629-637, 2024 May.
Article En | MEDLINE | ID: mdl-38564107

BACKGROUND: The present study aimed to examine the effect of magnesium (Mg) supplementation on cisplatin-induced nephrotoxicity (CIN) in pediatric cancer patients. METHODS: The present phase-2, open-label, multicenter, randomized controlled trial enrolled patients aged less than 20 years who were scheduled to receive cisplatin-containing chemotherapy and randomly allocated them at a ratio of 1:1 to a Mg supplementation arm with even-numbered chemotherapy courses (arm AB) or another arm with odd-numbered courses (arm BA). Analysis objects were reconstructed into two groups depending on whether the chemotherapy course had Mg supplementation (group B) or not (group A). The primary outcome was the proportion of chemotherapy courses resulting in elevated serum creatinine per chemotherapy course. The secondary outcomes included efficacies evaluated using other biomarkers and the safety of the Mg supplementation. RESULTS: Twenty-eight patients were randomly allocated to either group (16 to arm AB and 12 to arm BA). The baseline characteristics of the groups were similar. There was no significant difference in the proportion of courses with increased serum creatinine between the groups (group A: 10% vs. group B: 6%; P = 0.465) nor was any significant difference observed in other biomarkers during any chemotherapy course. The Mg value during chemotherapy was significantly higher in group B than that in group A. No adverse events related to magnesium administration were observed. CONCLUSIONS: The study design, which treated a single chemotherapy course as a study object, failed to detect a statistically significant benefit of Mg supplementation for preventing CIN in pediatric cancer patients. TRIAL REGISTRATION: JRCT ( https://jrct.niph.go.jp/ ) Identifier UMIN000029215 jRCTs031180251. UMIN-CTR ( http://www.umin.ac.jp/icdr/index.html ) Identifier UMIN000029215.


Cisplatin , Dietary Supplements , Magnesium , Neoplasms , Humans , Cisplatin/adverse effects , Cisplatin/administration & dosage , Female , Male , Child , Neoplasms/drug therapy , Magnesium/therapeutic use , Magnesium/administration & dosage , Adolescent , Child, Preschool , Creatinine/blood , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Young Adult
11.
Transpl Int ; 37: 12579, 2024.
Article En | MEDLINE | ID: mdl-38605938

Inhaled tobramycin treatment has been associated with nephrotoxicity in some case reports, but limited data are available about serum levels and its possible systemic absorption in lung transplant recipients (LTR). We conducted a single-center, observational and retrospective study of all adult (>18 years old) LTR treated with inhaled tobramycin for at least 3 days between June 2019 and February 2022. Trough serum levels were collected and >2 µg/mL was considered a high drug level. The primary outcome assessed the presence of detectable trough levels, while the secondary outcome focused on the occurrence of acute kidney injury (AKI) in individuals with detectable trough levels. Thirty-four patients, with a median age of 60 years, were enrolled. The primary indications for treatment were donor bronchial aspirate bacterial isolation (18 patients) and tracheobronchitis (15 patients). In total, 28 patients (82%) exhibited detectable serum levels, with 9 (26%) presenting high levels (>2 µg/mL). Furthermore, 9 patients (26%) developed acute kidney injury during the treatment course. Median trough tobramycin levels were significantly elevated in invasively mechanically ventilated patients compared to non-ventilated individuals (2.5 µg/mL vs. 0.48 µg/mL) (p < 0.001). Inhaled tobramycin administration in LTRs, particularly in those requiring invasive mechanical ventilation, may result in substantial systemic absorption.


Acute Kidney Injury , Tobramycin , Adult , Humans , Middle Aged , Adolescent , Tobramycin/adverse effects , Anti-Bacterial Agents/adverse effects , Cohort Studies , Retrospective Studies , Transplant Recipients , Acute Kidney Injury/chemically induced , Lung , Administration, Inhalation
12.
BMC Nephrol ; 25(1): 140, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649939

Contrast-induced acute kidney injury (CI-AKI) has become the third leading cause of hospital-acquired AKI, which seriously threatens the health of patients. To date, the precise pathogenesis of CI-AKI has remained not clear and may be related to the direct cytotoxicity, hypoxia and ischemia of medulla, and oxidative stress caused by iodine contrast medium, which have diverse physicochemical properties, including cytotoxicity, permeability and viscosity. The latest research shows that microRNAs (miRNAs) are also involved in apoptosis, pyroptosis, and autophagy which caused by iodine contrast medium (ICM), which may be implicated in the pathogenesis of CI-AKI. Unfortunately, effective therapy of CI-AKI is very limited at present. Therefore, effective prevention of CI-AKI is of great significance, and several preventive options, including hydration, antagonistic vasoconstriction, and antioxidant drugs, have been developed. Here, we review current knowledge about the features of iodine contrast medium, the definition, pathogenesis, molecular mechanism, risk factors, prevention and treatment of CI-AKI.


Acute Kidney Injury , Contrast Media , Contrast Media/adverse effects , Humans , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Risk Factors , Antioxidants/therapeutic use , MicroRNAs/metabolism , Fluid Therapy/methods , Apoptosis/drug effects , Autophagy , Pyroptosis/drug effects , Oxidative Stress , Iodine/adverse effects
13.
Ren Fail ; 46(1): 2344658, 2024 Dec.
Article En | MEDLINE | ID: mdl-38644359

Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.


Acute Kidney Injury , Complement Activation , Disease Models, Animal , Wasp Venoms , Animals , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/chemically induced , Mice , Wasp Venoms/immunology , Wasp Venoms/adverse effects , Male , Kidney/pathology , Elapid Venoms , Blood Urea Nitrogen , Complement C3/metabolism , Complement System Proteins/metabolism
14.
JAAPA ; 37(5): 22-27, 2024 May 01.
Article En | MEDLINE | ID: mdl-38595172

ABSTRACT: Acute liver failure, commonly caused by acetaminophen overdose, is associated with numerous systemic complications including cerebral edema, hypotension, acute kidney injury, and infection. Management is primarily supportive, with an emphasis on excellent neurocritical care. Although some antidotes and targeted treatments exist, the only definitive treatment remains orthotopic liver transplant.


Acetaminophen , Liver Failure, Acute , Liver Transplantation , Humans , Liver Failure, Acute/therapy , Liver Failure, Acute/chemically induced , Liver Failure, Acute/diagnosis , Acetaminophen/adverse effects , Drug Overdose/therapy , Brain Edema/etiology , Brain Edema/therapy , Analgesics, Non-Narcotic/adverse effects , Acute Kidney Injury/therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Antidotes
15.
Ren Fail ; 46(1): 2337287, 2024 Dec.
Article En | MEDLINE | ID: mdl-38627212

OBJECTIVE: This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS: CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 µg/kg, and CP + Dex 25 µg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1ß, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS: Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION: Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.


Acute Kidney Injury , Dexmedetomidine , Rats , Animals , Dexmedetomidine/adverse effects , Cisplatin/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Kidney/pathology , Interleukin-1beta , Caspases/adverse effects
16.
J Med Econ ; 27(1): 663-670, 2024.
Article En | MEDLINE | ID: mdl-38632967

OBJECTIVE: Contrast-sparing strategies have been developed for percutaneous coronary intervention (PCI) patients at increased risk of contrast-induced acute kidney injury (CI-AKI), and numerous CI-AKI risk prediction models have been created. However, the potential clinical and economic consequences of using predicted CI-AKI risk thresholds for assigning patients to contrast-sparing regimens have not been evaluated. We estimated the clinical and economic consequences of alternative CI-AKI risk thresholds for assigning Medicare PCI patients to contrast-sparing strategies. METHODS: Medicare data were used to identify inpatient PCI from January 2017 to June 2021. A prediction model was developed to assign each patient a predicted probability of CI-AKI. Multivariable modeling was used to assign each patient two marginal predicted values for each of several clinical and economic outcomes based on (1) their underlying clinical and procedural characteristics plus their true CI-AKI status in the data and (2) their characteristics plus their counterfactual CI-AKI status. Specifically, CI-AKI patients above the predicted risk threshold for contrast-sparing were reassigned their no CI-AKI (counterfactual) outcomes. Expected event rates, resource use, and costs were estimated before and after those CI-AKI patients were reassigned their counterfactual outcomes. This entailed bootstrapped sampling of the full cohort. RESULTS: Of the 542,813 patients in the study cohort, 5,802 (1.1%) had CI-AKI. The area under the receiver operating characteristic curve for the prediction model was 0.81. At a predicted risk threshold for CI-AKI of >2%, approximately 18.0% of PCI patients were assigned to contrast-sparing strategies, resulting in (/100,000 PCI patients) 121 fewer deaths, 58 fewer myocardial infarction readmissions, 4,303 fewer PCI hospital days, $11.3 million PCI cost savings, and $25.8 million total one-year cost savings, versus no contrast-sparing strategies. LIMITATIONS: Claims data may not fully capture disease burden and are subject to inherent limitations such as coding inaccuracies. Further, the dataset used reflects only individuals with fee-for-service Medicare, and the results may not be generalizable to Medicare Advantage or other patient populations. CONCLUSIONS: Assignment to contrast-sparing regimens at a predicted risk threshold close to the underlying incidence of CI-AKI is projected to result in significant clinical and economic benefits.


Acute Kidney Injury , Contrast Media , Medicare , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/methods , Percutaneous Coronary Intervention/economics , Percutaneous Coronary Intervention/adverse effects , Acute Kidney Injury/chemically induced , Contrast Media/adverse effects , United States , Male , Female , Aged , Risk Assessment , Aged, 80 and over , Risk Factors
17.
Ren Fail ; 46(1): 2338482, 2024 Dec.
Article En | MEDLINE | ID: mdl-38604946

BACKGROUND: Acute kidney injury (AKI) is recognized as a common complication following cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (CRS-HIPEC). Characterized by prolonged renal function impairment, acute kidney disease (AKD) is associated with a higher risk of chronic kidney disease (CKD) and mortality. METHODS: From January 2018 to December 2021, 158 patients undergoing CRS-HIPEC were retrospectively reviewed. Patients were separated into non-AKI, AKI, and AKD cohorts. Laboratory parameters and perioperative features were gathered to evaluate risk factors for both HIPEC-induced AKI and AKD, with the 90-day prognosis of AKD patients. RESULTS: AKI developed in 21.5% of patients undergoing CRS-HIPEC, while 13.3% progressed to AKD. The multivariate analysis identified that ascites, GRAN%, estimated glomerular filtration rate (eGFR), and intraoperative (IO) hypotension duration were associated with the development of HIPEC-induced AKI. Higher uric acid, lessened eGFR, and prolonged IO hypotension duration were more predominant in patients proceeding with AKD. The AKD cohort presented a higher risk of 30 days of in-hospital mortality (14.3%) and CKD progression (42.8%). CONCLUSIONS: Our study reveals a high incidence of AKI and AKI-to-AKD transition. Early identification of risk factors for HIPEC-induced AKD would assist clinicians in taking measures to mitigate the incidence.


Acute Kidney Injury , Hypotension , Renal Insufficiency, Chronic , Humans , Retrospective Studies , Hyperthermic Intraperitoneal Chemotherapy/adverse effects , Incidence , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Acute Disease , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Risk Factors
18.
Folia Histochem Cytobiol ; 62(1): 13-24, 2024.
Article En | MEDLINE | ID: mdl-38563049

INTRODUCTION: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases. Nevertheless, its role and related mechanism in S-AKI remain to be determined. MATERIALS AND METHODS: S-AKI was induced using lipopolysaccharide (LPS, 10 mg/kg) via a single intraperitoneal injection. Rg1 (200 mg/kg) was intraperitoneally administered for 3 consecutive days before LPS treatment. For histopathological examination, murine kidney tissues were stained with hematoxylin and eosin. Tubular injury score was calculated to evaluate kidney injury. Serum creatinine and BUN levels were measured for assessing renal dysfunction. The levels and activities of oxidative stress markers (MDA, 4-HNE, PC, GSH, SOD, and CAT) in renal tissue were measured by corresponding kits. Renal cell apoptosis was detected by TUNEL staining. The protein levels of apoptosis-related markers (Bcl-2, Bax, and Cleaved caspase-3), proinflammatory factors, SIRT1, IκBα, p-NF-κB p65, and NF-κB p65 in kidneys were determined using western blotting. Immunofluorescence staining was employed to assess p-NF-κB p65 expression in renal tissues. RESULTS: LPS-induced injury of kidneys and renal dysfunction in mice were ameliorated by Rg1. Rg1 also impeded LPS-evoked renal cell apoptosis in kidneys. Moreover, Rg1 attenuated LPS-triggered inflammation and oxidative stress in kidneys by inhibiting proinflammatory cytokine release, enhancing antioxidant levels and activities, and reducing lipid peroxidation. However, all these protective effects of Rg1 in LPS-induced AKI mice were reversed by EX527, an inhibitor of sirtuin 1 (SIRT1). Mechanistically, Rg1 upregulated SIRT1 protein expression, increased SIRT1 activity, and inactivated NF-κB signaling in the kidney of LPS-induced AKI mice, which was also reversed by EX527. CONCLUSIONS: Rg1 ameliorates LPS-induced kidney injury and suppresses renal inflammation, apoptosis, and oxidative stress in mice via regulating the SIRT1/NF-κB signaling.


Acute Kidney Injury , Ginsenosides , Sepsis , Animals , Mice , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Lipopolysaccharides/toxicity , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Sirtuin 1/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Sepsis/chemically induced , Sepsis/complications , Sepsis/drug therapy , Apoptosis
19.
Food Chem Toxicol ; 187: 114637, 2024 May.
Article En | MEDLINE | ID: mdl-38582345

Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.


Acute Kidney Injury , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Diclofenac/toxicity , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Antioxidants/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Kidney , Anti-Inflammatory Agents/therapeutic use , Caspases/metabolism
20.
Eur J Med Res ; 29(1): 210, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561791

BACKGROUND: Contrast-induced nephropathy (CIN) is a form of acute kidney injury (AKI) occurring in patients undergoing cardiac catheterization, such as coronary angiography (CAG) or percutaneous coronary intervention (PCI). Although the conventional criterion for CIN detection involves a rise in creatinine levels within 72 h after contrast media injection, several limitations exist in this definition. Up to now, various meta-analyses have been undertaken to assess the accuracy of different biomarkers of CIN prediction. However, the existing body of research lacks a cohesive overview. To address this gap, a comprehensive umbrella review was necessary to consolidate and summarize the outcomes of prior meta-analyses. This umbrella study aimed to offer a current, evidence-based understanding of the prognostic value of biomarkers in predicting CIN. METHODS: A systematic search of international databases, including PubMed, Scopus, and Web of Science, from inception to December 12, 2023, was conducted to identify meta-analyses assessing biomarkers for CIN prediction. Our own meta-analysis was performed by extracting data from the included studies. Sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were assessed using Meta-Disc and CMA softwares. RESULTS: Twelve studies were ultimately included in the umbrella review. The results revealed that neutrophil gelatinase-associated lipocalin (NGAL) exhibited the highest area under the curve (AUC), followed by cystatin-C, urinary kidney injury molecule-1 (uKIM-1), and brain natriuretic peptide (BNP) with AUCs of 0.91, 0.89, 0.85, and 0.80, respectively. NGAL also demonstrated the highest positive likelihood ratio [effect size (ES): 6.02, 95% CI 3.86-9.40], followed by cystatin-C, uKIM-1, and BNP [ES: 4.35 (95% CI 2.85-6.65), 3.58 (95% CI 2.75-4.66), and 2.85 (95% CI 2.13-3.82), respectively]. uKIM-1 and cystatin-C had the lowest negative likelihood ratio, followed by NGAL and BNP [ES: 0.25 (95% CI 0.17-0.37), ES: 0.25 (95% CI 0.13-0.50), ES: 0.26 (95% CI 0.17-0.41), and ES: 0.39 (0.28-0.53) respectively]. NGAL emerged as the biomarker with the highest diagnostic odds ratio for CIN, followed by cystatin-C, uKIM-1, BNP, gamma-glutamyl transferase, hypoalbuminemia, contrast media volume to creatinine clearance ratio, preprocedural hyperglycemia, red cell distribution width (RDW), hyperuricemia, neutrophil-to-lymphocyte ratio, C-reactive protein (CRP), high-sensitivity CRP, and low hematocrit (P < 0.05). CONCLUSION: NGAL demonstrated superior diagnostic performance, exhibiting the highest AUC, positive likelihood ratio, and diagnostic odds ratio among biomarkers for CIN, followed by cystatin-C, and uKIM-1. These findings underscore the potential clinical utility of NGAL, cystatin-C and uKIM-1 in predicting and assessing CIN.


Acute Kidney Injury , Percutaneous Coronary Intervention , Humans , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Biomarkers , Contrast Media/adverse effects , Coronary Angiography/adverse effects , Creatinine , Lipocalin-2 , Percutaneous Coronary Intervention/adverse effects , Meta-Analysis as Topic
...